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1. (P. 276 Qlc)

Let 2, = 27w . Since lim z, =1 = 0, by the contrapositive of 3.7.3 of the textbook, the series diverges.
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2. (P. 276 Q3c)

Note that
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We aim to show that 2°°_ 2™ (In2™)~ 2" converges: let 2, = 2™ (In2")~ 2", Note that
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Since lim —————— = 0, there exists M € N such that for all m > M, —————— < —. Therefore, for
m=o0 (mIn 2)n2 (mIn2)n2 = 2
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allm > M, z,, < (5) . Therefore, by Comparison Test (3.7.7 of the textbook), > oo 2™ (In2m)~n2
converges, and hence by the first inequality, - (In n)~ ™" converges.

Note: The trick in the first inequality can be generalised to a test known as “Cauchy condensation test”,
which is particularly useful when the series involves logarithm.

3. (P. 276 Q4c)

- 1 1
Note that e~ "™ = eln(™") = ~ Since Z — diverges, the series diverges.
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4. (P. 280 Q9)

Let 2, = ¢ ™ and y, = a,. Then since z, is decreasing with lim z, = 0, and by assumption S ay, is
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bounded, by Dirichlet Test (9.3.4 of the textbook), 3" z,y, = > an,e ™ converges.



